Формулы, связывающие физику на разных масштабах, получены в ЛТФ
Новости, 13 февраля 2023
Сотрудники Лаборатории теоретической физики ОИЯИ вывели наиболее общие формулы, которые позволяют получать многопетлевые ренормгрупповые уравнения в произвольном обобщении Стандартной модели (СМ) без необходимости явного расчета миллионов диаграмм Фейнмана, возникающих в старших порядках теории возмущения.
Благодаря работе Большого адронного коллайдера мы знаем, что Стандартная модель элементарных частиц прекрасно описывает огромное количество процессов на масштабах энергий доступных современным ускорителям. В Стандартной модели имеется восемнадцать параметров, описывающих взаимодействия фермионов (кварков и лептонов), векторных (фотон, W/Z-бозоны) и скалярных (хиггс) бозонов. Например, среди них — «константа» сильного взаимодействия, определяющая эффективную силу взаимодействия кварков и антикварков. Или хорошо известная электромагнитная константа, связанная с электрическим зарядом. Задав их, или лучше сказать измерив, можно делать предсказания.
Однако, ученые уже много лет ищут сигналы новой физики за пределами Стандартной модели. Теоретики пытаются построить обобщения CМ, а экспериментаторы стремятся найти следы новых частиц и выявить новые взаимодействия.
Если вы расширяете СМ, то добавляете новые параметры. Например, можно предположить существование более тяжелого аналога Z-бозона, взаимодействие которого с другими частицами задается новой калибровочной «константой» (обычно обозначаются как g). Или добавить несколько бозонов Хиггса, взаимодействие которых друг с другом, а также с кварками и лептонами будет задаваться «константами» самодействия (λ) и Юкавскими «константами» (y), соответственно.
«Часто важно понять, что происходит с моделью, если попытаться экстраполировать ее в область больших энергий, не доступных современным (и возможно даже будущим) ускорителям. Или, наоборот, задав модель Новой физики на очень высоком масштабе энергий (обычно предполагается, что в этом случае модель обладает большей симметрией, чем СМ), интересно понять, какие отклонения от предсказаний СМ можно измерить в экспериментах», — рассказал Александр Бедняков, начальник сектора квантовой теории поля ЛТФ ОИЯИ, один из авторов работы.
Рис. 1. Зависимость констант связи от масштаба: от Стандартной модели к возможной физике за ее пределами (BSM)
«Ренормгрупповые уравнения показывают, как, благодаря рождению виртуальных частиц, происходит экранировка или антиэкранировка зарядов при изменении энергетического масштаба (μ). Такого рода эффекты имеют универсальную природу, и мы пытаемся учитывать их в наших расчетах. Каждая новая петля соответствуют рождению и поглощению какой-то виртуальной частицы. Чем сложнее модель, тем мы больше имеем различных вариантов», — пояснил Александр. Он добавил, что для того, чтобы найти зависимость «зарядов» от масштаба в конкретной модели необходимо проводить трудоемкие вычисления диаграмм Фейнмана.
Выполненные в ходе работы сложные вычисления были преобразованы в формулы, представляющие собой достаточно простые дифференциальные уравнения. Задав значения параметров (силу взаимодействия) на одном масштабе, можно найти их значения на другом масштабе. На Рис. 2 схематично показаны полученные в цикле работ наиболее общие ренормгрупповые уравнения для калибровочных, юкавский «констант», а также для самодействия скалярных бозонов. Видно, что число слагаемых в формулах растет вместе с порядком теории возмущений. Каждое слагаемое можно представить в виде диаграммы Фейнмана, где сплошные линии соответствуют фермионам, волнистые — калибровочным бозонам, а пунктирные — скалярным частицам.
Рис. 2. Общие ренормгрупповые уравнения для калибровочных, юкавский «констант» и для самодействия скалярных бозонов
Готовые уравнения удобны тем, что все расчеты сложных интегралов, соответствующих диаграммам, уже проведены. Достаточно лишь задать модель, т. е. перечислить все частицы и выписать лагранжиан — функцию, описывающую их квантовые числа и взаимодействия.
Эти уравнения могут также применяться неспециалистами в петлевых вычислениях: например, их могут использовать физики-теоретики для анализа Новой физики. Также эти готовые формулы находят свое применение в физике конденсированного состояния – в теории фазовых переходов второго рода для расчета различных критических индексов. Этот результат был отмечен как один из самых ярких, полученных ЛТФ ОИЯИ в 2021 году. Авторы цикла работ, посвященных этой тематике, Александр Бедняков и Андрей Пикельнер, были удостоены первой Премии ОИЯИ за 2021 год в категории «За научно-исследовательские теоретические работы».
«Другой важный результат цикла тесно связан с квантовой хромодинамикой (КХД), описывающей кварки, глюоны и их взаимодействия. Мы верим, что квантовая хромодинамика должна работать как при больших, так и при малых энергиях», — продолжил Александр. На больших расстояниях взаимодействие между кварками становится настолько сильным, что использование стандартной теории возмущений затруднено. На помощь приходят компьютерные вычисления на дискретной евклидовой пространственно-временной решетке. Такими расчетами занимается, в частности, коллаборация High Precision QCD (Quantum chromodynamics), в которую входят физики-теоретики научных центров Америки, Англии, Италии, Японии, Испании. Среди всего прочего они извлекают из решеточных данных ключевые параметры КХД — массы кварков и постоянную сильного взаимодействия.
«Можно взять массу кварка или константу сильного взаимодействия измеренные при высоких энергиях и сравнить ее с тем, что извлекают на решетке. Если сходится – это означает, что квантовая хромодинамика «работает». Если не сходится – возникает вопрос: надо ли модифицировать модель или всего лишь улучшить точность теоретических расчетов. Часто именно высокая точность позволяет найти небольшие отклонения — возможные признаки Новой физики», — прокомментировал исследователь. Важным нюансом здесь является то, что ту величину, которую извлекают из решеточных данных, часто нельзя непосредственно сравнивать с аналогичной, но используемой в физике высоких энергий. «Этот произвол «заложен» в теорию перенормировок, но мы можем его контролировать в рамках теории возмущений. Именно такого рода пересчетные формулы и были найдены нами в трехпетлевом приближении. Нам очень приятно, что наши расчеты были незамедлительно использованы коллаборацией HPQCD для нового рекорда точности в определении массы очарованного кварка», — подытожил Александр Бедняков.
Ключевые результаты работ представляют сами ученые.
Новая эра ренормгрупповых вычислений в ЛТФ: современные методы, инструменты и последние достижения
Метод ренормализационной группы (РГ) позволяет систематически улучшать точность расчетов в теории возмущений. Ключевую роль в нем играют ренормгрупповые функции, задающие отклик различных величин на изменение масштаба. Их расчет является отдельной задачей и представляет собой одну из наиболее трудоемких и технически сложных частей РГ анализа.
В представленном цикле работ обсуждаются различные аспекты многопетлевых расчетов, а также последние достижения, связанные с обобщением недавних рекордных вычислений в СМ и φ4 на случай произвольных кванто-полевых моделей.
В рамках наиболее общей перенормируемой теории в четырех измерениях впервые были выведены формулы для бета-функций калибровочных и юкавских констант взаимодействия в четырех и трех петлях, соответственно [1]. Оригинальность используемого подхода состоит в том, что рассматривались простые игрушечные теории и с их помощью фиксировались модельно независимые коэффициенты в выражениях для РГ функций, минуя трудоемкие и громоздкие вычисления. Благодаря нашим расчетам стало возможно провести РГ анализ произвольной модели Новой физики на новом уровне точности без необходимости явного диаграммного счета и процедуры перенормировки. В качестве приложения найденных формул нами были выведены четырехпетлевые бета-функции всех калибровочных констант в СМ, а также в ее обобщении с несколькими хиггсовскими дублетами. Кроме того, впервые были получены шестипетлевые выражения для РГ функций как безразмерных, так и размерных параметров наиболее общего варианта теории φ4 [2]. Одним из возможных применений этого результата является изучение классов универсальности в теории критического поведения, соответствующих различным симметриям и различным параметрам порядка.
Важным шагом на пути к указанным результатам являются расчеты в рамках конкретных физических моделей. В частности, существенное влияние на дальнейшие исследования оказало вычисление четырехпетлевых электрослабых вкладов в бета-функцию сильной константы связи в СМ [3]. Благодаря тщательному анализу неопределенностей, возникающих при наивном подходе к размерной регуляризации киральных теорий, был получен ответ, подтвержденный впоследствии независимым вычислением и обобщенный в дальнейшем на случай произвольной теории поля [Poole&Thomsen (2019)]. Также был рассмотрен скалярный сектор простейшего расширения СМ с дополнительным хиггсовским дублетом [4] и найдены соответствующие РГ функции на уровне трех петель. Одним из побочных результатов расчета оказалось исправление опечаток в работах 80-х годов, повсеместно используемых в компьютерных кодах для анализа Новой физики.
Другим приоритетным результатом является вывод трехпетлевых формул, позволяющих связать непертурбативные расчеты на решетке с ключевыми параметрами КХД (сильной константой связи [5] и массами кварков [6]), используемыми при вычислении наблюдаемых в коллайдерных экспериментах. Для этих целей впервые с помощью оригинальных идей было проведено трудоемкое аналитическое вычисление трехпетлевых вершинных функций [7] в симметричной кинематике. Актуальность расчета подтверждается тем, что полученный результат [6] был немедленно использован коллаборацией HPQCD для улучшения точности решеточного вычисления массы очарованного кварка.
Современные расчеты в старших порядках возмущения немыслимы без автоматизации и применения новых подходов и алгоритмов для вычисления диаграмм Фейнмана. В работах цикла был разработан оптимизированный публично доступный код для расчета четырехпетлевых вакуумных диаграмм [8]. Он позволил в дальнейшем осуществить нетривиальное вычисление контрчленов для всех пятипетлевых диаграмм, необходимых для вывода РГ функций скалярных моделей в шестимерии [9], открыв тем самым новые возможности для РГ анализа в пространстве высших размерностей.
Отметим также, что особенностью представленного цикла работ является востребованность результатов в разных областях современной физики. Нам удалось выйти за пределы стандартных подходов и разработать необходимый набор инструментов, позволяющий неспециалистам в многопетлевых вычислениях использовать ренормгрупповой метод для получения важных физических результатов.
Лаборатория теоретической физики им. Н. Н. Боголюбова имеет давнюю и богатую историю подобного рода вычислений. Начиная с основополагающих работ Н. Н. Боголюбова и Д. В. Ширкова, РГ метод и связанные с ним расчеты многопетлевых диаграмм Фейнмана на протяжении многих лет использовались в ОИЯИ для получения результатов мирового уровня. Среди них можно отметить широко известные работы, посвященные вычислениям в скалярной φ4 и квантовой хромодинамике (КХД). Что касается Стандартной модели (СМ), то большой резонанс в литературе вызвали недавние расчеты трехпетлевых РГ функций. После измерения массы бозона Хиггса в 2012 г. они позволили провести наиболее полный и самосогласованный анализ проблемы стабильности вакуума, повлекший за собой бурные дискуссии о возможной нестабильности СМ и необходимости введения Новой физики.
Литература:
[1] Alexander Bednyakov и Andrey Pikelner. Four-Loop Gauge and Three- Loop Yukawa Beta Functions in a General Renormalizable Theory . в: Phys. Rev. Lett. 127.4 (2021), с. 041801. doi: 10 . 1103 / PhysRevLett . 127.041801. arXiv: 2105.09918 [hep-ph].
[2] A. Bednyakov и A. Pikelner. Six-loop beta functions in general scalar theory . в: JHEP 04 (2021), с. 233. doi: 10 . 1007 / JHEP04(2021 ) 233. arXiv: 2102.12832 [hep-ph].
[3] A. V. Bednyakov и A. F. Pikelner. Four-loop strong coupling beta-function in the Standard Model. в: Phys. Lett. B 762 (2016), с. 151 156. doi: 10.1016/j.physletb.2016.09.007. arXiv: 1508.02680 [hep-ph].
[4] A. V. Bednyakov. On three-loop RGE for the Higgs sector of 2HDM . в: JHEP 11 (2018), с. 154. doi: 10.1007/JHEP11(2018)154. arXiv: 1809. 04527 [hep-ph].
[5] A. Bednyakov и A Pikelner. Four-loop QCD MOM beta functions from the three-loop vertices at the symmetric point . в: Phys. Rev. D 101.7 (2020), с. 071502. doi: 10 . 1103 / PhysRevD. 101 . 071502. arXiv: 2002 . 02875 [hep-ph].
[6] Alexander Bednyakov и Andrey Pikelner. Quark masses: N3LO bridge from RI/SMOM to MS scheme . в: Phys. Rev. D 101.9 (2020), с. 091501. doi: 10.1103/PhysRevD.101.091501. arXiv: 2002.12758 [hep-ph].
[7] Andrey Pikelner. Three-loop vertex integrals at symmetric point . в: JHEP 06 (2021), с. 083. doi: 10. 1007/ JHEP06(2021) 083. arXiv: 2104. 06958 [hep-ph].
[8] Andrey Pikelner. FMFT: Fully Massive Four-loop Tadpoles . в: Comput. Phys. Commun. 224
(2018), с. 282 287. doi: 10.1016/j.cpc.2017.11. 017. arXiv: 1707.01710 [hep-ph].
[9] Mikhail Kompaniets и Andrey Pikelner. Critical exponents from ve-loop scalar theory renormalization near six-dimensions . в: Phys. Lett. B 817 (2021), с. 136331. doi: 10.1016/j.physletb.2021.136331. arXiv: 2101. 10018 [hep-th].